IOP SClence jopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Non-standard connections in classical mechanics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1995 J. Phys. A: Math. Gen. 28 5553
(http://iopscience.iop.org/0305-4470/28/19/011)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 02/06/2010 at 01:21

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/28/19
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

1. Phys. A: Math. Gen. 28 (1995} 5553-5567. Printed in the UK
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Abstract. In the jet-bundle description of first-order classical field theories there are some
.elements, such as the Lagrangian energy and the constmuction of the Hamiltonian formalism,
which require the prior choice of a connection. Bearing these facts in mind, we analyse the
situation in the jet-bundle description of time-dependent classical mechanics. We prove that
this connection-dependence also occurs in this case, although it is osvally hidden by the use
of the ‘matural’ connection given by the uivial bundle structure of the phase spaces under
congideration. However, we also prove that this dependence is dynamically imrelevant, except
where the dynamical variation of the energy is concerned. In addition, the relationship between
first integrals and connections is shown for 2 sufficiently large class of Lagrangians.

1. Introduction

One of the most interesting lines of current research in mathematical physics is the geomeiric
formulation of first-order classical field theories, which is mainly achieved by the use of
jet bundles J'E — E — M and the geomemcal structures with which they are endowed
{2,3,6,8-12,14-16, 18],

Among all the relevant features observed when dealing with these geometrical
formulations, we wish to point out the following: there are some dynamical elements
of the theories depending on the prior choice of a connection in the configuration bundle
z: E — M: For instance:

e In the Lagrangian formalism, the definition of the density of Lagrangzan ernergy and the

Lagrangian energy function [8].
e The construction of the Hamiltonian formalism of these theories, in particular the
Hamiltonian function and the Liouville form. (see, for instance, [3]).

It is also known that time-dependent mechanical systems can be geometrically described
using jet bundles. Then M =R, £ = @ xR and J'E = TQ x R (where Q represents the
configuration space of the system), and consequently this can be considered as a particular
gituation of field theories [7,9]. In this context, since @ x R is a trivial bundle, it is
canonically endowed with a ‘natural’ connection which is used (when necessary) to define
all the dynamical and geometric elements of the theory; in particular, the Hamiltonian
formalism and the energy Lagrangian function. A possible conclusion of this approach is
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that, for non-autonomous mechanical systems, the definition of these dynamical elements
does not depend on the choice of any connection.

The aim of this paper is to make evident the influence of the choice of a connection
in the geometrical construction of some elements of the theory. In order to achieve this,
we will choose an arbitrary connection in the bundle @ x R — R and we will reconstruct
the dynamics of the theory starting from this point. In addition, we will study the relation
among the descriptions coming from different choices of a connection, and we will interpret
the results of this analysis from a dynamical point of view. Connaections on @ x R — R
can be understood as special time-actions in the manifold @ x R. The standard one is by

translations (g, ) > (g.t + 5). Other actions correspond to non-standard connections. In
this sense changes in connections imply changes in the energy and in the geometric elements
of the theory, but there are no changes in the dynamical evolution of the system if the new
geometric elemnents and the Hamiltonian deformed by the connection are taken.

The structure of the work is as follows. In section 2 we introduce the basic ideas
about connections in the bundle @ x R and the natural geometric elements in the bundle
T@ xR - @ xR, Section 3 is devoted to presenting the Lagrangian formalism (using
arbitrary connections) and showing which of its elements are connection-depending. We
obtain results on the variation of the energy along the motion of the systemt and on the
relationship between first integrals and connections. All these results generalize classical
ones for non-autonomous systems. In section 4 we constriuct the Hamiltonian formalism
for non-autonomous systems, depending on the choice of an arbitrary connection and,
subsequently, we give a dynamical interpretation of the results so obtained. In section 5 a
characterization of the Lagrangian energy function, based on variational principles, is given.
Section 6 is devoted to summarizing the conclusions reached in the work,

All the manifolds and maps are C*. Summation over repeated indices is understood.

2. The 1-jet bundle of 7:Q) X R — R. Geometric structures and connections

The ideas in this section are known. We merely emphasize the differences between the
general sitwation and this particular one in order to make the paper more readable and
self-contained. See [13] and [19] as general references.

2.1. Connectionsinn :Q xR —> R

Consider the bundle 7w: 0 x R — R, where Q is an n-dimensional differentiable manifold
(the configuration space of a physical system). The l-jet bundle of sections of m is
a:TQ xR — @ xR, In fact, if ¢ = (¢g,Id) is a local section of x defined in a
neighbourhood of s € R, with &(s) = (g,s), then the 1-jet equivalence class of ¢ is
determined by (Ts¢g) (d/dr); that is, an element of T,@. Conversely, if v € T,Q and
s € R, there is an equivalence class of curves ¢g: (s —¢, 5+¢€) = O with Tegpg (d/d2) = v;
50 a l-fet equivalence class of local sections is defined and ¢ = (¢p,Id) is one of its
representatives.

If (U; g#) is a local chart in 2, then a local chart in TQ xR is (rrl“(U % R); g*, 1, vH#)
where :

M
V4((g,5),v) = (d‘pdf))

¢:R — O x R being a representative of {(g,5),v) € T@ xR and ¢* = g* 0 ¢pg. Of
course, these coordinates v* are the physical velocities.
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In order to introduce the connections, we must study the tangent bundle of @ x R.
Observe that there is a natural identification between T(Q x R} and TQ x TR :=
npTQ @& n*TR given by

¢ T(QxRBR) — TOXTR
Wg,s)u) = ((g.5), Tgnma() + Tegom(e))
where mwp: Q x R — @ is the natural projection.

But 3 TQ is identified with V(z} (the vertical sub-bundie of T(Q x R} with respect
to ). In fact, if (¢,,5) € @ xR and j;: @ — @ x R is the s-injection defined by
Js(@) = (g, 5), then Vg () = T, js(T,;, @). So we have the natural splitting

T(Q xR) =V(») @& ="TR

and 7*TR is called the horizontal sub-bundle. As a consequence, if v € T (@2 % R), we
will write v = vg -+ vg in this splitting.

This natural splitting will be called the standard connection in the bundle x: OxR — R.
The theory of connections describes the possible splittings of this kind.

Following this model we have that:

Proposition 1. The following elements on 7: @ x R — R can be canonically construeted
one from the other:

(i) A section of m:TQ x R — @ x R, that is a mapping V: @ x R — TQ x IR such that

mioV =Idgup-
(ii) A sub-bundle H(V) of T(Q x R) such that
T(Q x B) = V(z) & H(V). (1)

(iii) A semibasic 1-form V on @ x R with values in T(Q x R) (that is, an clement of
r@ xR, a*T*"Q) ® £(Q x R)), such that « o V = o, for every semibasic form
o e 290 xR).

(We use the notation I"(A, B) for the set of sections of the bundle B — A). .

Proof. The proof of this statement, in the general case of a bundle m: E — M, can be
found in (different sections of) [19]. O

Definition 1. A connection in the bundle m: @ x R — R is one of the above mentioned
equivalent elements. H(V) is called the horizontal sub-bundle of T(Q X R) associated with
the connection V and its sections horizontal vector fields. V is called the connection form.

Given the sub-bundle H(V) and the splitting (1), we have the maps
he: T(Q x R) — H(V) vy: T(Q x R) = V()

called the horizontal and vertical projections (we wxll use the same symbols v and vy for
the natural extensions of these maps to vector fields).
In a local chart {g¥, z, v*) the expressions of all these elements are

Vig,s) = (g,s,v"*(g,s)
J 9

V= dr®( i aq“)

d

g
V) = = u_"_
H(V) = span 3z+y 5g"
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(for every (g.5) € Q x R). The relations among all of them are given [ocally by their
‘coordinates’ y#(q, t).
For every vector field

0 d d
XEXR+XQEf—a—t+XQ=f§+L#WEX(QX]R)

where Xp € C¥(Q x R) @ A(Q), the horizontal and vertical projections are given by

a d a
— — ____ = — — [ J—
th = flv(X) = f (32‘ -+ A 3 ,u) va = Uv(X) = XQ fl 3

and we have the splitting
3 - _
X=f-é—£+XQ =X = V(X)+ V(X)) = Xy; + Xpy.
Moreover, we have the following result.

Proposition 2. Every coggection in thg bundle m: @ x R — R induces a _ganonical lifting
X(R) — X (0 xR). If X is the image of X € X(R) by this lifting, then X is a horizontal
vector field.

Proof. Let V be a connection, {g,s)e @x R and and ¢ = (¢g, Id) a representative of
Vg, s). If X € X(R), we define X by

Y(Q: 5) :=T;¢(X;).

From the local expression of V we deduce that X is a C™-vector field and it is horizontal
because

Vg, 5), X(g, )} = (Tstp 0 T ym )W Xg.5)) = (Tsp © Tyg 37 © Tsp) (X}
=T (Xs) = Xg,)-

a

But X(R) has a global generator d/d¢; so, given a connection V, we can take its lifting:

d aly d d 3

— =Ts¢9(— )-I—Tld (— )=TS¢Q(— )-1—— .

dt {5 dr, TN de dtlg)  at|g g
Observe that the map

d
)

is a section of the bundle #*TQ — Q@ x R, that is, a time-dependent vector field in .
Then we have:

Proposition 3. A connection in the bundle 7: QxR — R is equivalent to a time-dependent
vector field in Q.

Proof. Given a connection V, taking
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we have the desired vector field.
Conversely, given a time-dependent vector field ¥: @ x R — a3TQ, we have a
connection defined by

V : xR — TQOxR
(g,s) g (Y(‘I.S)1S)

If Y is the vector field induced by V, then the connection form is written as

V=dr® (i + Y) .
dt
As we have pointed out above, the trivial bundle =: 0 xR — R has a natural connection:
the standard one Vp, with H(Vy) = m*TR, In this case

- 0
Vp = —
h=dt® Y

the time-dependent vector field associated with V is Yo = 0 and the lifting induced Sy Vo
is given by :

dl 3
Wl Ml
If we have another connection V with associated vector field ¥, this lifting is
— 3 )
7 ==, + Yig.s)
Aty g

then we can understand that the ‘lines of time’ induced by this connection are the integral
curves of the vector field
3 -
3 +¥:=Y
which is called the suspension of ¥ [1].
From now on, we will refer to non-standard connections in the bundle w: Q x R in
those cases that differ from the standard one.

2.2. Geometric elements

In the Lagrangian formalism the dynamics takes place in the manifold TQ x R. Then, in
order to set it, we need to introduce some geometrical elements of the bundle 7 TQO xR —
O xR (see [7,9,11,19] for details). When needed, we will use a local system given by
(g".t, v").

2.2.1. The structural canonical 1-form [9]. We can define a 1-form # in TQ x R, with
values in 7y V(r), in the following way:

#{{(g, 5), u); X) = (Tyg.n.071 ~ T @ o o MmN Xy )
where ¢ is a representative of {(g,s),u) € TQ x R. ¢ is called the structure canonical
Jorm of T@ x R. Its local expression-is .

9
. o )
# = (dg* — v*dD) ® S
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2.2.2. The vertical endomorphisms. Taking into account that m: TQ xR - @ xR is
a vector bundle and the fibre on (g,5) € @ x R is T, Q x {5}, there exists a canonical
diffeomorphism between the my-vertical sub-bundle and = (TQ x R), that is

Vim) =7/ (TQ x R) ™ nfapTQ =~ 77 V().
We denote by & : #fV(x) — V(m;) the realization of this isomorphism and we will use

the same notation & for its action on the modules of sections of these bundles.
By construction we have that, locally

] a
S(a—gﬁ)—w *

a3
— N
S=E@® Py
where {£#} is the dual basis of {8/8¢*} in 7V (m).
Here & is an element of I'(TQ xR, afV*{@) @ F(TQ xR, V(rr;)). Taking into account
that the structure form @ is an element of 21(TQ xR, 7V(m)) = R2UTOE xR)Q@I(TQ x
R, ={'V(mr)), using the natural duality, by contracting S with ¢ we obtain an element

V=i € 2YTQ xR) @ I(TQ x R, V(1))

whose local expression is

and so

a
= (dg* — v¥d —
V= (dg v t)®au#

Notice that V can be thought as a C®(T@ x R)-module morphism V: X(TQ x R) —
X(TQ x R) with image on the m;-vertical vector fields.

& and V are called the vertical endomorphisms of TQ xR, They are sections of different
bundles but, if we have a connection V, & can be also understood as an endomorphism on
A(TQ »x R). In fact, notice that the splitting T(Q x R} = V() ® H(V), induced by the
connection V, has a dual counterpart T*(Q x R) = V*(x) @ H*(V). So V*(x) is identified
by V with a sub-bundle of T*(@ x R). With the same notation as above, if {£#} is the dual
basis of {8/8g#} in 7{"V(rr), then this identification is given by

4 > dg* — yhd:
if
a ]
V=dt — r—1.
8 (5:+7"50)

In the same way, we have the splitting 77 T*(Q x R) = #V*(z) @ xH*(V) and the
injection jg:mV*(mw) — m{T*(Q xR). But this last bundle is a sub-bundle of T*(TQ xR)
whose sections are the my-semibasic 1-forms in TQ x R. Hence, by means of this injection,
S is an element of $21(TQ x R) @ X(TQ x R), with values in the vertical vector fields,
which will be denoted by S¥. Its local expression is

3
V = (dg* — y* —
§'=(g" —yHd) @ —

Now, we are able to consider the difference SY —V € 21(T@ x R) ® X(TQ x R)
whose local expression is

8V~V=(v“-y“)dt®-§;

which will henceforth be used in order to characterize the Lagrangian energy.
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3. Lagrangian formalism. Connections and Lagrangian energy functions

A time-dependent Lagrangian function is a function £ € C*(TQ x R). As is known, we
can construct the Lagrangian forms associated with £ using the geometrical structure of
Tg = R.

Definition 2. The Poincaré—Cartan I- and 2-forms associated with the Lagrangian function
L are the forms in TQ x R defined by

Op:=dLo V4 Ldt Qp 1= —d@y,.

For the coordinate expressions of the Poincaré—Cartan forms we obtain:
8L 8L
3 #) dr + —dg*

3 22
L L
Q,;:—d(av )Ad ”+d(—éu—uv“—£)x\dt.

Observe that these elements do not depend on the connection.

As usual, we say that a Lagrangian function L is regular iff its associated form €2 has
maximal rank, which is equivalent to demanding that det (82£/3v#8v") is different from
zero at every point.

Assuming the regularity of £, the dynamics of the system is described by a vector field
Xy € X(TQ x R), which is a second-order differential equation {(SODE), such that

(XS =0 iXp)der=1 (@)

As a consequence, the integral curves of Xz verify the Euler—Lagrange equations and X,
is obviously independent of any connection you can choose on @ xR — R.

A very different picture arises when we try to define intrinsically the Lagrangian energy
Sunction. If we consider the standard connection, it can be obtained as follows: take the
lifting of d/dt from R to TQ x R given by the connection, which will be denoted as usual
by 9/8¢, then

W
E‘C__I(é?)@‘c

its local expression being

aL
= — = — pH
O = o (dg* — v¥dt) + Ldf = (E vt

One of the most significant aspects of the above expression for the Lagrangian energy
is that it is obtained by contraction of the infinitesimal time-action generator with the
Lagrangian form. If we consider a non-standard connection V, then in order to define the
Lagrangian energy function associated to V we must lift d/d¢ from R to TQ x R to be
contracted with @, in the following way:

Definition 3. Let V be a connection in 7: @ xR — R, ¥ € X(Q x R) the lifting of d/dt
induced by V and j'¥ € X(TQ x R) its canonical lifting. The Lagrangzan energy funcuon
associated with the Lagrangian function £ and the connection V is

Ef =-i(j'N)e,
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In a local chart, if

~ 0 9
F=—+4y—
3t+y agt
we have
~ @ 9 gyt dy*y 8
.1 v
Y=— B —_ — | —
FE=gty Bq“+( ar TV aqv)auu
and
L
V o T g ey
ﬂ—av#(v ¥ —L.

It is obvious from this expression that the Lagrangian energy is connection-depending,.
In particular, when the standard connection is used, then y# = 0, which is the fact that
‘hides’ the explicit dependence on the connection of the energy in classical mechanics.

Notice that, since ®, is m;-semibasic, the energy function does not, in fact, depend on
the extension of ¥ from Q x R to TQ x R.

Another characterization of the energy can be obtained in the following way. In the
geometrical description of mechanics, it is also usual to define the Lagrangian energy
using the vertical endomorphism. In order to achieve this result, consider the difference
SV -V e QUTO x B) @ T(TQ x R, V(7)) and its natural contraction with dZ,
dLo (SY - V) € 21(TQ x R), whose local expression is

dLo(§-V) = %(v“ — pH)de.

Then it is easy to verify that EY = i (j'#)(dL o (§ — V) — Lds).

The 1-form £ := dLo(S—V)—Ldz € 21 (TQ X R) is called the density of Lagrangian
energy associated with the Lagrangian function £ and the connection V and it is a (w om;)-
semibasic form whose local expressions is

aL
Y LY R

At this point it is relevant to ask about the dynamical meaning of these connection-
depending energies. Remember that in the standard case we have

aL
Xp(Er) = —— : 3

3t
which is a relation between the rates of variation of two functions with respect to different
time actions: the action through the flow of the dynamical vector field X and the one given
by translations in time. As we have seen above, every connection V induces a lifting j' ¥
of d/dt, which is the infinitesimal generator of a new time action, and then the equivalent
result to (3) is given by the following:

Theorem 1. Let ¥y € X(TQ x R) be the dynamical vector field (the solution of
equations (2)). Then

X:ED =—('P)L.
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Proof. Notice that, since X is a SODE, V(X ) = Q; therefore
Xc(BY) = #(Xo)E] = —i(X0)di(j D)0, = i(X) i P)O, — i(X ) LG D)0,
=i(j'D) X0+ ('Y, XcDOr ~ LG ) (X0,
= ~L('P)i(X)(dL o V + Ldr)
= — L' D iV(E )AL - LGTENL (X, )dr)
=-(G'NL

where we have taken into account that [j 1, X, is 7, -vertical (becausg X is a SODE and
JY is a canonical lifting [5]} and ®( is a @;-semibasic form, so i ([j1¥, X )@, =0. O

As an immediate corollary of this theorem, we have the following result which recovers
Noether’s theorem -

Corollary 1. Let ¥ € X(Q xR) be a vector field such that ¥(t) = 1 and V the associated
connection, V = dt @ ¥. If the Lagranglan L is invariant by the prolongation of ¥, that is
J1P(L) = 0, then the associated energy Ez is invariant along the dynamical trajectories.

Furthermore, there is a relevant relationship between the first integrals of the dynamical
vector field and the Lagrangian energy functions which is given in the next statement:

Proposition4. If £ -is a Lagrangian function such that its associated Legendre
transformation (see next section) is different from zero at every point, then every first
Integral of the dynamical vector field X is the energy associated to some connection.

Proof. Let V be a connection such that its associated vector field ¥ verifies (j1F)L =0,
then it follows that EE is a conserved quantity. Conversely, if f € C®(TQ x R) verifies
X(f) = 0, take the connection associated to any vector field ¥ such that ; (j? ¥)8r=—F.
Taking into account that @, is m-semibasic and using the definition of the Legendre
transformation FL, this equation can be written as

3
FL+il— =
YoFL+i ( 3:) -f
which obviously can be solved for ¥ if F£ is different from zero at every point. Then we
have that E} = f. O

This proposition proves that, assuming the hypothesis, every Noether invariant is the
energy associated with some connection.

Examples,

(i) If £ is an autonomous Lagrangian, it is invariant by the vector field ¥ associated to
the standard connection, then EY, is invariant.
(ii) Now, suppose that £ is an autonomous Lagrangian with
3L
agr
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for some g*. Taking the connection given by
3 3
Vedt®|—+—
® (Bt * 34“)

the associated energy is

aL
EY =B} — —
L L™ agn
and hence the corresponding components of the ‘linear momentum’ are invariant by the
dynamics,

(iii) In the same way, if £ is an autonomous Lagrangian and it is invacriant by the
prolongation of the vector field
i + “ 9 — “i
ar " gy T4 agr

then the components of the ‘angular momentum’ are constants of the motion.

4. Hamiltonian formalism with non-standard connections

In the above section we have obtained that the Lagrangian vector field X does not depend
on the connection and only the energy function must be redefined in this sitnation,

Next we are going to consider the Hamiltonian formulation of the problem associated
with the Lagrangian £ and the connection V. In order to achieve it, we need a Hamiltonian
function and a Hamilton-Cartan form.

As usual, the geometric elements are defined in the bundles T*Q xR LTS OxR SR
In addition, we have the Legendre transformation associated to £, FL: TO xR — T*2 xR,
defined as FL(x, t) := (FL,(x), 1), for every (x,1) € TQ x R, where EL:TQ@ — T*Q is
the usual fibre derivative of the restriction of £ obtained by considering its value for every
fixed t. If (g*, 1) is a local system in @ x R and (g*, v*, 1), (g¥*, pu. ) are the associated
systems in TQ x R and T*Q x R, we have

* - aﬁ x
FL*g# = g* Fﬁpﬂ=m FL¥t =1.
Then the Lagrangian function £ is said to be regular iff FL is a local diffeomorphism and
it is called hyperregular iff FL is a global diffeomorphism.

In order to construct the Hamilton—Cartan form, we need a I-form in T*Q x R. On the
one hand we have the canonical forms in T*Q, 6 € 21(T*Q) and w := —df € L¥T*Q),
and their pull-back to T*Q x R by means of the projection 71.0: T*Q x R — T*Q, so
obtaining the forms 6o = zp. 8, we = 1. pe0.

On the other hand, every connection V allows the construction of another 1-form in
T*Q x R in the following way:

Definition 4. Consider (&, s) € T*Q xR and u € T (T*Q xR), then 6y € 21(T*QxR)
is defined by

B ({2, 5); w) = alve(Tr(w))).

(i) The form 6y is called the Liouville I-form associated with the connection V.
(ii) The form wy = —dfy is called the Liouviile 2-form associated with the connection V.
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These forms are differentiable as can be deduced from their local expressions which, if

. 8
V=dt®(—+y”i)

at dg#
and taking into account the expression of the vertical projection operator, are
Gy
Oy = p,dg” — y*p,dt wy = dg" Adp, + y¥dp, A dt + pMEZ—qu” Ade,

Consider now the difference 6, — vy = n which is a I-form in T*@ x R whose
local expression is n = p,y*dsr. Taking into account that &y is a semibasic form, it
can immediately be obtained that:

Proposition 5. If V is a connection in 7: @ xR — R and ¥ € X(Q x R) its associated
vector field, then

n=6(Y)dr

where Y. € X(T*Q x R) is any extension of ¥ from @ x R to T*Q x R. (We can take
V= jir).

The other geometric element is the Hamiltonian function. In the standard sitnation,
assuming that the Lagrangian function is hyperregular, this function h is defined by the
equation EX = FL*h. In the general case we have:

Definition 5. The Hamiltonian function associated with the Lagrangian £ and the
connection V is the function h¥ € C®(T*Q x R) such that

EY =FL*'h",

As in the standard case, the existence and vniticity of this function is assured {at least
locally) if we assume that £ is a hyperregular (or regular) Lagrangian. In other cases, under
certain hypotheses on FL, it is possible to prove that Ef and EY are also FL-projectable,
so we can define # and £".

A simple calculation in a local chart of natural coordinates leads to the following result:

Prapasition 6.
- ]
v — — —
hY =h-—n ( Br) .

And, finally, we have the relations:
Proposition 7.
() FLr6, = O + Eldr.
(ii) FL*0y = © +ELdz.

Proof.  The first one is a classical equality. The second one is proved directly in a local
chart of natural coordinates. ‘ O

Now we define:
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Definition 6. (i) The standard Hamilton—Cartan (I and 2)-forms associated with the
Hamiltonian function h are

B¢ =6y — hdt Qg 1= —dB®y = wy +dh A dt.
(ii) The Hamilton-Cartan (1 and 2)-forms associated with the connection V and the
Hamiltonian function h" are

@y =6y —h"dr Qy 1= ~dBy = wy +dh"* A de.
Then we have the following result:

Proposition 8. The Hamilton—Cartan forms associated with the standard and non-standard
connections are the same:

Qy =0y §20 = Qy.
Proof. Both results arise taking into account that 8y — 6y = 1 and the proposition (6). O

Bearing in mind that the dynamical vector fields associated with the Hamiltonian
functions h and hY are respectively the solutions of the Hamilton equations

i(X0)Q0 =0 i(Xo)dt =1
I(Xe)2y = 0 i(Xv)dt =1
we conclude that these dynamical vector fields are the same: X¢ = Xp.
Hence, the connection V deforms the geometric elements, but not the dynamical situation
ot, in other words, we can redefine the Hamiltonian function and the Liouville form in the
Hamiltonian formalism in order to maintain the same dynamics.

As a final remark, one can easily check that @, = FL*®@y. Therefore Sy = FL* Qv
and Xy = FL, X for regular Lagrangians.

5. On the characterization of the energy by means of variational principles

We have defined above the Lagrangian energy function, justifying it geometrically.
However, it can be considered as an ad hoc definition. Next we give another characterization
of the energy which is based on variational principles and justifies the definition we have
given.

First of all we need the foliowing lemma:

Lemmal. Let B € 2U(TQ x R) and f € C(TQ x R). The following conditions are
equivalent:

3] aX(fdt)y =a*p for every differentiable curve o:[g,p] CR — Q.
(i) i fde=1| B for every differentiable curve o:{q, 5] CR = Q.

o

{where &:[a, b] CR — T@ x IR denotes the canonical lifting of o).

Progf. Trivially (i) = (ii).

Conversely, if we suppose (i) is not true, then there exists one curve o: [a, b)) CE — @
with &*(fdt — B) 5 0 and hence there is 5 € [4, b] and a closed neighbourhood V' of s in
fa, b} such that, taking y: V — O with y = &y, then

ff(fdt—ﬁ)#O
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so (ii) is false. . [
Next we state:

Proposition 9. The Lagrangian energy function infroduced in definition 3 is the unique
function in T@ x R verifying the condition

F*(Erdl) =& (FL 9y — Ldr)
for every curve o:[a, B] C R — Q.

Proof.  Uniqueness: Let f and g be two functions verifying this condition. Obvicusly
F(f - )dt) =0, but 0 = *{((f — g)de) = (f — g){(&(t))dt, for every ¢ € [a, b]. Hence,
(f — 2)(&(t)) = 0, and this implies f — g = 0, because: every point in TQ x R is in the
image of some curve .

Existence. From proposition 7 we obtain

F*(FL*0¢ — Ldt) = 5%(@, + Brdr + Ld)
=&*(dLoV — Ldt +ELdt + L£dt)'= &*(ELdr)

since *(dL o V) = 0. So, the energy function introduced in definition 3 satisfies this
condition. . : ) .

From the lemma 1 we obtain, for every curve o:[a, b] — O,
f Eldt = f (FL 0 — £dt)
- Ja &
therefore

f L£dt = f(Fﬁ*ev - Egdt) = f FL*(By ~ hvdt)
& 5 - 7 .

= f FL*(Gy —hdt) = f FL@p = B
& & FLlo&
and this equality shows the equivalence between the Hamilton principle of minimal action
(of the Lagrangian formalism) and the Hamilton—-Jacobi principle (of the Hamiltonian
formalism). Therefore, taking into account proposition 9, we have to conclude that the
energy (as defined in definition 3) is the only function that realizes the equivalence between
both variational principles. This fact justifies the definition given above.

6. Conclusions

The geometric description of non-autonomous mechanics is usually given using the natural
connection induced by the trivial bundle structure of the phase spaces TQ x R (for the
Lagrangian formalism) and T* Q xR (for the Hamiltonian formalism). We have reformulated
both formalisms starting from the choice of an arbitrary connection. As a consequence of
this analysis, we have shown that the geometric construction of some elements of the
theory depends on this choice; namely, the Lagrangian energy function of the Lagrangian
formalism and the Hamiltonian formalism itself; in particular its geometrical structures
(Liouville forms) and the Hamiltonian function. This fact is hidden in the usual geometric
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descriptions because the connection used is the natural one agsociated to the trivial bundle
structures.

We have gencralized the geometric definition of the Lagrangian energy function, and
consequently the Hamiltonian function, in order to take into account the use of non-standard
connections. This definition characterizes the Lagrangian energy as the only function that
realizes the equivalence between the Hamilion variational principle and the Hamilton—Jacobi
principle.

The next step was to investigate the dynamical relevance of the choice of different
connections. We have proved that the dynamics is insensitive to this choice because the
Poincaré-Cartan forms of the Lagrangian formalism do not depend on the chosen connection,
and the Hamilton—Cartan forms of the Hamiltonian one can be redefined in order to maintain
the same dynamics.

It is worth pointing out that, from the physical point of view, the connection-dependence
of the energy function can be understood as follows: for time-dependent systems, to take
a non-standard connection can be interpreted as a change of the time action on 2 x R
(which arises from taking H(V) instead of #*TR as the horizontal sub-bundle). Then, it
is reasonable that the energy function changes in its turn, since it can be considered as the
conjugate function of ‘time’ (as is made evident in some geometrical descriptions of non-
auntonomous systems [7]). A significant result is the relationship between the dynamical
variation of the connection-dependent energy and the variation of the Lagrangian with
respect to the time-action induced by the connection.

A further consequence is that, for time-dependent dynamical systems described by a
given Lagrangian function, we have proved that any first integral of the dynamics is the
energy function for a suitable connection. Moreover, we have a2 means of obtaining different
Lagrangian energy (or Hamiltonian) functions which are dynamically equivalent. This
consists of taking different connections in order to construct these functions.

As a final remark, we trust that these results will help to clarify some aspects of the
geometrical description of classical field theories.
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