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Abstract. In the jet-bundle description of firstader classical field theories there are some 
.elements, such as the Lagrangian energy and the construction of the Hamiltonian formalism, 
which q u i r e  the prior choice of a connection. Bearing these facts in mind, we analyse the 
situation in the jet-bundle description of timedependent classical mechanics. We prove that 
this connection-dependence also occurs in this case, although it is osually hidden by the use 
of the 'natural' connection given by the uivial bundle StNCNre of the phase spaces under 
consideration. However, we also pmve that this dependence is dynamically irrelevant, except 
where the dynamical variation of the energy is concerned. In addition, the~relationship between 
first integrals and connections is shown for a sufficiently large class of Lagrangians. 

1. Introduction 

One of the most interesting lines of current research in mathematical physics is the geometric 
foimulation of first-order classical field theories, which is mainly achieved by the use of 
jet bundles / ' E  + E --f M and the geometrical structures with which they are endowed 
[Z, 3,6,8-12,14-16,181. 

Among all the relevant features observed when dealing with these geometrical 
formulations, we wish to point out the following: there are some dynamical elements 
of the theories depending on the prior choice of a connection in the configuration bundle 
R: E + M :  For instance: . In the Lagrangian formalism, the definition of the dens@ of Lagrangian energy and the 

Lagrangian energyfunction [8 ] .  
0 The construction of the Hamiltonian formalism of these theories, in particular the 

Hamiltonimfunction and the Liouville form. (see, for instance, [3]). 

It is also known that time-dependent mechanical systems can be geometrically described 
using jet bundles. Then M = R, E = Q x R and J ' E  = TQ x R (where Q represents the 
configuration space of the system), and consequently this can be considered as a particular 
situation of field theories [7,9]1 In this context, since Q x 1 is a trivial bundle, it is 
canonically endowed with a 'natural' connection which is used (when necessary) to define 
all the dynamical and geometric elements of the theory; in particular, the Hamiltonian 
formalism and the energy Lagrangian function. A possible conclusion of this approach is 
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that, for non-autonomous mechanical systems, the definition of these dynamical elements 
does not depend on the choice of any connection. 

The aim of this paper is to make evident the influence of the choice of a connection 
in the geometrical construction of some elements of the theory. In order to achieve this, 
we will choose an arbitrary connection in the bundle Q x R + R and we will reconstruct 
the dynamics of the theory starting from this point. In addition, we will study the relation 
among the descriptions coming from different choices of a connection, and we will interpret 
the results of this analysis from a dynamical point of view. Connections on Q x R + R 
can be understood as special time-actions in the manifold Q x R. The standard one is by 
translations (q, f )  A (q. f + s). Other actions correspond to non-standard connections. In 
this sense changes in connections imply changes in the energy and in the geometric elements 
of the theory, but there are no changes~in the dynamical evolution of the system if the new 
geometric elements and the Hamiltonian deformed by the connection are taken. 

The structure of the work is as follows. In section 2 we introduce the basic ideas 
about connections in the bundle Q x R and the natural geometric elements in the bundle 
TQ x R + Q x R. Section 3 is devoted to presenting the Lagrangian formalism (using 
arbitrary connections) and showing which of its elements are connection-depending. We 
obtain results on the variation of the energy along the motion of the system and on the 
relationship between first integrals and connections. All these results generalize classical 
ones for non-autonomous systems. In section 4 we construct the Hamiltonian formalism 
for non-autonomous systems, depending on the choice of an arbitrary connection and, 
subsequently, we give a dynamical interpretation of the results so obtained. In section 5 a 
characterization of the Lagrangian energy function, based on variational principles, is given. 
Section 6 is devoted to summarizing the conclusions reached in the work. 

All the manifolds and maps are Cm. Summation over repeated indices is understood. 

2. The 1-jet bundle of r:Q x R + R. Geometric structures and connections 

The ideas in this section are known. We merely emphasize the differences between the 
general situation and this particular one in order to make the paper more readable and 
self-contained. See 1131 and [19] as general references. 

2.1. Connections in II : Q x R + R 

Consider the bundle r: Q x R + R, where Q is an n-dimensional differentiable manifold 
(the confrguration space of a physical system). The 1-jet bundle of sections of r is 
rl :TQ x R + Q x R. In fact, if @ = (@p.Id) is a local section of r defined in a 
neighbourhood of s E 8, with @(s) = (q.s), then the 1-jet equivalence class of @ is 
determined by (T,@Q) (d/dt); that is, an element of T,,Q. Conversely, if U E T9Q and 
s E R, there is an equivalence class of curves @p: (s--E, s f r )  Q with T& (d/dt) = U ;  
so a 1-jet equivalence class of local sections is defined and 4 = (@e, Id) is one of its 
representatives. 

If (U; 4”) is a local chart in Q, then a local chart in TQ xR is (r;’(U xR); q”, t .  U”) 
where 

@:R + Q x R being a representative of ((q.s), U) E TQ x R and 4” = q” o @Q. Of 
course, these coordinates u p  are the physical velocities. 
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In order to introduce the connections, we must study the tangent bundle of Q x R. 
Observe that there is a natural identification between T(Q x R) and TQ x TR := 
n;TQ fB z*TR given by 

$J : T ( Q x R )  --f T Q x T R  
((4,  s), U) H ( ( q . S ) ,  T(q,x)"Q(u) +T(q.s)n(u)) 

where JCQ: Q x R + Q is the natural projection. 
But aZTQ is identified with V(n) (the vertical sub-bundle of T(Q x R) with respect 

to n). In fact, if (qo, s) E Q x R and j , :  Q --f Q x R is the s-injection defined by 
j,v(q) = ( q ,  s), then Vg,,)(n) = T,j,(T,Q). So we have the natural splitting 

T(Q X R) = V(Z) fB n*TR 
and n*TR is called the horizontal sub-bundle. As a consequence, if U E T(q,s,(Q x R), we 
will write U = U Q  + ug in this splitting. 

This natural splitting will be called the standard connection in the bundle n: Q XR -+ R. 
The theory of connections describes the possible splittings of this kind. 

Following this model we have that: 

Proposition 1. The following elements on n: Q x R + R can be canonically constructed 
one from the other: 
(i) A section of nl:TQ x R -+ Q x R, that is a mapping 0: Q x R + TQ x R such that 

(ii) A sub-bundle H(V) of T(Q x R) such that 
o V = IdpxR. 

T(Q X It&) = V(a)  fB H(V). (1) 
(iii) A semibasic I-form ? on Q x R with values in T(Q x R) (that is, an element of 

r ( Q  x R,a*T+Q) @ X(Q x R)), such that a o ? = a,  for every semibasic form 
a E Ql(Q x R). 

(We use the notation r(A, B )  for the set of sections of *e bundle B + A) 

ProoJ The proof of this statement, in the general case of a bundle n: E + M, can be 
found in (different sections of) [19]. 0 

Defnrition I .  A connection in the bundle n: Q x R + R is one of the above mentioned 
equivalent elements. H(V) is called the horizontal sub-bundle of T(Q xR) associated with 
the connection V and its sections horizontal vectorjields. ? is called the connection form. 

Given the sub-bundle H(V) and the splitting (I), we have the maps 

hv:T(QxR)+H(V) UV:T(QXR)+V(Z) 
called the horizontal and vertical projections (we will use the same symbols hv and uv for 
the natural extensions of these maps to vector fields). 

In a local chart (q", I, U") the expressions of all these elements are 

V(q, s) = (4 ,  s, Y%. s)) 
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(for every (4 ,  s )  f Q x R). The relations among all of them are given locally by their 
‘coordinates’ y’(q. t ) .  

For every vector field 

a a a 
at at a p  

(:t ’3 34’ 

x E x ~ + x Q  5 f -  + X Q  = f- +A”- E x(Q X R) 

where X Q  E Cm(Q x B) @ X ( Q ) ,  the horizontal and vertical projections are given by 

a 
x h , = h v ( X ) =  f -+A Xu,  E u v ( X )  = X Q  - fA’- 

and we have the splitting 
a 
at 

x = f - + x Q  = x - ? ( x )  + v ( x )  =xu, + Xhs. 

Moreover, we have the following result. 

Proposition 2. 
X(W) + X(Q x B). If 
vector field. 

Proof: 
V ( q ,  s) .  If X E X(R), we define SI by 

Every connection in the bundle n: Q x W -+ B induces a canonical lifting 
is a horizontal is the image of X E X(W) by this lifting, then 

Let V be a connection, (4 .  s) E Q x R and and @ = ( @ Q ,  Id) a representative of 

- 
X ( q ,  s) := Ts$(Xs ) .  

From the local expression of V we deduce that SI is a Cm-vector field and it is horizontal 
because 

e K q , s ) . x ( q , s ) )  = K @ O T ~ ~ , ~ F ) ( ~ ~ ~ , ~ ) )  = (T&oT(q.Jp 0Ts@)(XS) - 
= Ts@(Xs) = X(p,s).  

U 

But X ( R )  has a global generator d/dt; so, given a connection V ,  we can take its lifting: 

Observe that the map 

is a section of the bundle n*TQ -+ Q x R, that is, a time-dependent vector field in Q. 
Then we have: 

Proposition 3. 
vector field in Q. 

A connection in the bundle n: Q XR -+ W is equivalent to a timedependent 

Proof: Given a connection V ,  taking 
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we have the desired vector field. 

connection defined by 
Conversely, given a time-dependent vector field Y: Q x R + xZTQ, we have a 

V : Q x R  -+ T Q x R  
(4 , s )  ~ I+ (Y(q.s)*S) 

If Y is the vector field induced by V, then : connection rm is written as 

As we have pointed out above, the trivial bundle x :  Q xR + R has a natural connection: 
the standard one 00, with H(V0) = x * T R  In this case 

the time-dependent vector field associated with 00 is YO = 0 and the lifting induced by 0, 
is given by 

If we have another connection V with associated ,vector field Y ,  this lifiing is 

then we can understand that the ‘lines of time’ induced by this connection are the integral 
CUNS of the vector field 

a - 
- + Y : = Y  
at 

which is called the suspension of Y [l]. 

those cases that differ from the standard one. 
From now on, we will refer to non-standard connections in the bundle x :  Q x R in 

2.2. Geometric elements 

In the Lagrangian formalism the dynamics takes place in the manifold TQ x R. Then, in 
order to set it, we need to introduce some geometrical elements of the bundle x~TQ x W --f 
Q x R (see [7,9,11, 191 for details). When needed, we will use a local system given by 
(q@, t. U”). 

2.2.1. The structural canonical I-form [9]. We can define a 1-form 0 in TQ x R, with 
values in n;V(x), in the following way: 

o(((q, s), U); X) := (T((q,s),u)x~ - T((q.s).u)(@J 0 x 0 xl))(x(q,s)) 

where 4 is a representative of ((4, s), U) E TQ x R. B is called the structure cunonical 
form of TQ x B. Its local expression~is 
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2.2.2. The vertical endomorphisms. Taking into account that nl:TQ x R -+ Q x R is 
a vector bundle and the fibre on (q, s) E Q x R is Tp Q x Is}, there exists a canonical 
diffeomorphism between the nl-vertical sub-bundle and n;(TQ x R), that is 

V(X,) Y n;(TQ x R) _U nfir;lTQ n;V(a). 
We denote by S : x;V(x) -+ V(n1) the realization of this isomorphism and we will use 
the same notation S for its action on the modules of sections of these bundles. 

By construction we have that, locally 
a 

( a i ” )  aug 
s - =- 

and so 
~~ 

a 
S=<’@- 

avp 
where [p] is the dual basis of (a/aq”} in a;V(n). 

HereSis anelement of rCrQxR,r;V*(x))@r(TQxW,V(nl)). Taking intoaccount 
that the structure form it is an element of fZ’vQ xB, n;V(xl)) = a l (TQ xB)@r(TQ x 
R, n;V(n)), using the natural duality, by contracting S with it we obtain an element 

U := i(S)it E fZ’(TQ x R) @ r(TQ x R, V(XI)) 

whose local expression is 
a 

a u p  
U = (dq” - U”dt) @ - . 

Notice that V can be thought as a Cw(TQ x R)-module morphism V:X(TQ x R) 
X(TQ x R) with image on the nl-vertical vector fields. 

Sand  V are called the vertical endomorphisms of TQ xR. They are sections of different 
bundles but, if we have a connection V, S can be also understood as an endomorphism on 
X(TQ x R). In fact, notice that the splitting T(Q x R) = V(n)  cl3 H(V), induced by the 
connection V, has a dual counterpart Y(Q x R) = V*(n) fB H*(V). So V*(a) is identified 
by V with a sub-bundle of T*(Q x R). With the same notation as above, if [<”) is the dual 
basis of (a/aq’) in n;V(n), then this identification is given by 

6” H dq” - y”dt 

if 

V = dt @ (k + Y” &) 
In the same way, we have the splitting n;Y(Q x R) = n;V*(x) @n;H*(V) and the 

injection jv: n;V*(n) + z;Y( Q xR). But this last bundle is a sub-bundle of T(TQ xR) 
whose sections are the nl-semibasic 1-forms in TQ x R. Hence, by means of this injection, 
S is an element of @(TQ x R) @ X(TQ x R), with values in the vertical vector fields, 
which will be denoted by So. Its local expression is 

a 
a v p  

Sv = (dq’ - y”dt) @ - 

Now, we are able to consider the difference Sv - U E fZ’(TQ x R) @ X(TQ x R) 
whose local expression is 

a Sv - Y = (U” - y”)dt @ 

which will henceforth be used in order to characterize the Lagrangian energy. 
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3. Lagrangian formalism. Connections and Lagrangian energy functions 

A time-dependentLagrangianfunction is a function L E Cm(TQ x R). As is known, we 
can construct the Lagrangian forms associated with L using the geometrical structure of 
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TQ x R. 

Definition 2. 
C are the forms in TQ x R defined by 

The Poincari-Cartan I -  and2forms associated with the Lagrangian function 

01: := dL o V + Ldt Qr. := -der.. 

For the coordinate expressions of the Poincar6-Cartan forms we obtain 

Observe that these elements do not depend on the connection. 
As usual, we say that a Lagrangian function L is regular iff its associated form 0~ has 

maximal rank, which is equivalent to demanding that det (a2L/au*au“) is different from 
zero at every point. 

Assuming the regularity of L, the dynamics of the system is described by a vector field 
Xr. E X(TQ x R), which is a second-order differential equation (SODE), such that 

i(X1:)Qr. = 0 i(Xr.)dt = 1 (2) 

As a consequence, the integral curves of XL verify the Eider-Lagrange equetions and XL 
is obviously independent of any connection you can choose on Q x R -+ R. 

A very different picture arises when we try to define intrinsically the Lagrangian energy 
function. If we consider the standard connection, it can be obtained as follows: take the 
lifting of d/dt from R to TQ x R given by the connection, which will be denoted as usual 
by alar, then 

E1: = - i (i) or. 

its local expression being 
al: 

auw 
EL = -U* - C. 

One of the most significant aspects of the above expression for the Lagrangian energy 
is that it is obtained by contraction of the infinitesimal time-action generator with the 
Lagrangian form. If we consider a non-standard connection V, then in order to define the 
Lagrangian energy function associated to V we must lift d/dt from R to TQ x R to be 
contracted with 01: in the following way: 

Definition 3. E X(Q x R) the lifting of d/dt 
induced by V and j ’ p  E X(TQ x R) its canonical lifting. The Lagrangian energyfunction 
associated with the Lagrangian function L and the connection V is 

Let V be a connection in n: Q x R -+ R, 
L , 

E: = - i ( j ’ ? ) e r .  
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In a local chart, if 

we have 

and 

It is obvious from this expression that the Lagrangian energy is connection-depending. 
In particular, when the standard connection is used, then y” = 0, which is the fact that 
‘hides’ the explicit dependence on the connection of the energy in classical mechanics. 

Notice that, since Or is irl-semibasic, the energy function does not, in fact, depend on 
the extension of F from Q x R to TQ x R. 

Another characterization of the energy can be obtained in the following way. In the 
geometrical description of mechanics, it is also usual to define the Lagrangian energy 
using the vertical endomorphism. In order to achieve this result, consider the difference 
Sv - V E Q1(TQ x R) 8 r (TQ x iW,V(rl)) and its natural contraction with dL, 
d& o (Sv - V )  E Q1(TQ ,x R), whose,local expression is 

a& 
a w  dL o (S - V )  = -(U” - y”)dt. 

Then it is easy to verify that E: = i(j’F)(dL o (S - V )  - Ldt). 
The 1-formEZ :=dLo(S-V)-&dt E Q1(TQxR) iscalled thedensityofkgrangian 

energy associated with the Lagrangian function L and the connection V and it is a (n o xl)- 
semibasic form whose local expressions is 

At this point it is relevant to ask about the dynamical meaning of these connection- 
depending energies. Remember that in the standard case we have 

which is a relation between the rates of variation of two functions with respect to different 
time actions: the action through the flow of the dynamical vector field XC and the one given 
by translations in time. As we have seen above, every connection V induces a lifting j ’F  
of d/dt, which is the infinitesimal generator of a new time action, and then the equivalent 
result to (3) is given by the following: 

Theoremi. Let X,: E X ( T Q  x R) be the dynamical vector field (the solution of 
equations (2)). Then 

X&) = -(jlF)L. 
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PmoJ Notice that, since XL is a SODE, U(Xc) = 0; therefore 

Xc(EZ) = i(XL)dEz'= -i(Xc)di(j'F)@L = i(XL)i(j'r')d@L - i ( x ~ ) L ( j ' r ' ) @ ~  
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= i ( j ' r ' ) i ( X L ) ~ L + i ( [ j ' r ' , ~ L ~ ) @ L  - ~ ( j ' r ' ) i ( ~ d @ c  

= -L(j 'r ')i(Xr)(dLoU+Ldt) 

= -L(jlr') i(U(XL))dL - L(j'F)(Li(XL)dt) 

= -(j'F)L 

where we have taken into account that [j'r', X,] is zl-vertical (because .XL is a SODE and 
j ' ?  is a canonical lifting 151) and @e is a nl-semibasic form, so i([j'r', X,])@c = 0. 0 

As an immediate corollary of this theorem, we have the following result which recovers 
Noether's theorem. 

Corollary 1. Let r' E X ( Q  x R) be a vector field such that F(2) = 1 and V the associated 
connection, V = dt @ F. If the Lagrangian L is invariant by the prolongation of r', that is 
j ' f ( L )  = 0, then the associated energy E: is invariant dong the dynamical trajectories. 

Furthermore, there is a relevant relationship between the first integrals of the dynamical 
vector field and the Lagrangian energy functions which is given in the next statement 

Proposition 4. If 13 .is a Lagrangian function such that its associated Legendre 
transformation (see next section) is different from zero at every point, then every first 
integral of the dynamical vector field XL is the energy associated to some connection. 

PmoJ Let V be a connection such that its associated vector field Y verifies ( j 'F)L = 0, 
then it follows that E: is a conserved quantity. Conversely, i f f  E Cm(TQ x R) verifies 
X L ( ~ )  = 0, take the connection associated to any vector field Y such that i(j ' r ' )@L = -I.. 
Taking into account that Or is zl-semibasic and using the definition of the Legendre 
transformation FL,  this equation can be written as 

which obviously can be solved for Y if FL is different from zero at every point. F e n  we 
U 

This proposition proves that, assuming the hypothesis, every Noether invariant is the 

have that E l  = f. 

energy associated with some connection. 

Examples. 

(i) If L is an autonomous Lagrangian, it is invariant by the vector field ?o associated to 

(ii) Now, suppose that L is an autonomous Lagrangian with 
the standard connection, then E! is invariant. 
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for some 4'. Taking the connection given by 

V = d t @  -+- 
( i t  a:.) 

the associated energy is 

and hence the corresponding components of the 'linear momentum' are invariant by the 
dynamics. 

(iii) In the same way, if C is an autonomous Lagrangian and it is invariant by the 
prolongation of the vector field 

a a a 
z + q c ~ -  4 -  'aq" 

then the components of the 'angular momentum' are constants of the motion. 

4. Hamiltonian formalism with non-standard connections 

In the above section we have obtained that the Lagrangian vector field Xc does not depend 
on the connection and only the energy function must be redefined in this situation. 

Next we are going to consider the Hamiltonian formulation of the problem associated 
with the Lagrangian C and the connection V. In order to achieve it, we need a Hamiltonian 
function and a HamikWdarrM form. 

Q X R  2 R. 
In addition, we have the Legendre wansformation associated to C, FC: TQ x B + T* Q x R, 
defined as FC(x, t) := (FCt(x), t), for every ( x ,  t )  E TQ x R, where FCt:TQ -+ T Q  is 
the usual fibre derivative of the restriction of C obtained by considering its value for every 
fixed t .  If (q", t) is a local system in Q x B and (q., UP, t), (9''. p., t )  are the associated 
systems in TQ x R and T*Q x B* we have 

As usual, the geometric elements are defined in the bundles 'FQ XB 

Then the Lagrangian function C is said to be regular iff FC is a local diffeomorphism and 
it is called hyperregular iff FC is a global diffeomorphism. 

In order to construct the Hamilton-Cartan form, we need a I-form in T" Q x I[$. On the 
one hand we have the canonical forms in T Q ,  0 E Q ' V Q )  and o := -d0 E SZZ(T*Q), 
and their pull-back to F Q  x R by means of the projection rpa:T*Q x R + F Q ,  so 
obtaining the forms 00 = r;&, WO = r&m. 

On the other hand, every connection V allows the construction of another 1-form in 
T*Q x R in the following way: 

Definition4 
is defined by 

Consider ( L Y , ~ )  ~ ' F Q x R a n d u  ~ T ~ ~ . , ) ( T * Q x R ) , t h e n 0 ~  E Q'('FQxR) 

ev((a, s); U) := a(vdTr1(u))). 

(i) The form b'v is called the Liouville I-form associated with the connection V. 
(ii) The form ov := -d& is called the Liouville 2-form associated with the connection V. 
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These forms are differentiable as can be deduced from their local expressions which, if 

and taking into account the expression of the vertical projection operator, are 
ay' 

Qv = p,dq' - y'p'dt 0 . y  = dq' A dp, + y'dp, A dr + p,,dq" A dt. 
a4 

Consider now the difference 60 - 6'v q which is a I-form in YQ x R whose 
local expression is q = p,y'dr. Taking into account that 6'0 is a semibasic form, it 
can immediately be obtained that: 

Proposition 5. 
vector field, then 

If V is a connection in n: Q x R + R and Y E X(Q x R) its associated 

17 = Bo(Y)dt 

where y. E X ( F Q  x R) is any extension of f from Q x R to T*Q x @. (We can take 
Y = j '  F). 

The other geometric element is the Hamiltonian function. In the standard situation, 
assuming that the Lagrangian function is hypenegular, this function h is defined by the 
equation E; = FL'h. In the general case we have: 

Defulition 5. 
connection V is the function hv E C " P Q  x R) such that 

The Hamiltonian function associated with the Lagrangian I: and the 

E; = FI:*hv. 

As in the standard case, the existence and uniticity of this function is assured (at least 
locally) if we assume that I: is a hyperregular (or regular) Lagrangian. In other cases, under 
certain hypotheses on FL, it is possible to prove that E: and E! are also FL-projectable, 
so we can define h and hv. 

A simple calculation in a local chart of natural coordinates leads to the following result: 

Pmposition 6. 

h V =h-q(:). 

And, finally, we have the relations: 

Proposition 7. 

(i) 

(ii) 

FL'SO = Or. + Eidt. 

FIC'Bv = @L + Ezdt. 

ProoJ The first one is a classical equality. The second one is proved directly in a local 
chart of natural coordinates. 0 

Now we define: 
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Definition 6. (i) The stnndard Hamilton-Curtan (1 and 2)-fonns associated with the 
Hamiltonian function h are 

00 := 00 - hdt Qo := -dOo = 00 + dh A dt. 

(ii) The Hamilton-Curtun (1 and 2)-fo? associated with the connection V and the 
Hamiltonian function hv are 

@v := 6'0 - hVdt n v  := -dOv = ov + ahv A dt. 

Then we have the following result: 

Proposition 8. 
connections are the same: 

The Hamilton-Cartan forms associated with the standard and non-standard 

@o=Ov Qo=Qv,  

Pro05 Both results arise taking into account that 6'0 - BV = and the proposition (6). 0 

Bearing in mind that the dynamical vector fields associated with the Hamiltonian 
functions h and hv are respectively the solutions of the Hamilton equations 

i(X0)Slo = 0 
i(Xv)Qv = 0 

i(Xo)dt = 1 
i(Xv)dr = 1 

we conclude that these dynamical vector fields are the same: XV = X,. 
Hence, the connection V deforms the geometric elements, but not the dynamical situation 

or, in other words, we can redefine the Hamiltonian function and the Liouville form in the 
Hamiltonian formalism in order to maintain the same dynamics. 

As a final remark, one can easily check that Or = FL*@v. Therefore Qc = FL*Qv 
and Xv = FL:,Xt for regular Lagrangians. 

5. On the characterization of the energy by means of variational principles 

We have defined above the Lagrangian energy function, justifying it geometrically. 
However, it can be considered as an ad hoc definition. Next we give another characterization 
of the energy which is based on variational principles and justifies the definition we have 
given. 

First of all we need the following lemma: 

Lemma 1. Let @ E Q'pQ x R) and f E P(TQ x R). The following conditions are 
equivalent: 

(0  

(ii) 

(where 5 :  [ U ,  b] c R + TQ x R denotes the canonical lifting of U) .  

Prooj Trivially (i) + (ii). 
Conversely, if we suppose (i) is not true, then there exists one curve U :  [U ,  61 c R + Q 

with,?*(fdt - f l )  # 0 and hence there is s E [U, 61 and a closed neighbourhood V of s in 
[a, 61 such that, taking y :  V + Q with y = uIv, then 

C*(fdt) = 5'@ l fdt = l fl  
for every differentiable curve U :  [U,  61 c R + Q. 

for every differentiable curve U :  [a, 61 c IR + Q. 
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so (ii) is false. E 

Next we state: 

Proposition 9. 
function in TQ x B verifying the condition 

The Lagrangian energy function introduced in definition 3 is the unique 

a"(E1dt) =.Z*(FC*Bv - Cdt) 

for every curve U :  [a, b] c B + Q .  

Proof: Uniqueness: Let f and g be two functions verifying this condition. Obviously 
3*((f - g)dt) = 0, but 0 = S*((f - g)dt) = (f - g)(S(t))dt, for every t E [a, b]. Hence, 
(f - g)(C(t))  = 0, and this implies f - g = 0, because every point in TQ x B is in the 
image of some curve a. 

Existence. From proposition I we obtain 

O*(FC*Bv - Cdr) = e*(@c + EZdt + Cdt) 

= Z*(dC o V - Cdt +EIdt + Cdt)'= o"(E1dt) 

since C*(dC o V )  = 0. So, the energy function introduced in definition 3 satisfies this' 
condition. ., E 

From the lemma 1 we obtain, for every curve U: [a, b] + Q ,  

therefore 

and this equality shows the equivalence between the Hamilton principle of minimal action 
(of the Lagrangian formalism) and the Hamilton-Jacobi principle (of the Hamiltonian 
formalism). Therefore, taking into account proposition 9, we have to conclude that the 
energy (as defined in definition 3) is the only function that realizes the equivalence between 
both variational principles. This fact justifies the definition given above. 

6. Conclusions 

The geometric description of non-autonomous mechanics is usually given using the natural 
connection induced by the trivial bundle structure of the phase spaces TQ x B (for the 
Lagrangian formalism) and T* Q xB (for the Hamiltonian formalism). We have reformuhted 
both formalisms starting from the choice of an arbitrary connection. As a~consequence of 
this analysis, we have shown that the geometric construction of some elements of the 
theory depends on this choice; namely, the Lagrangian energy function of the Lagrangian 
formalism and the Ihniltonian formalism itself; in particular its geometrical structures 
(Liouville forms) and the Hamiltonian function. This fact is hidden in the usual geometric 
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descriptions because the connection used is the natural one associated to the trivial bundle 
structures. 

We have generalized the geometric definition of tho Lagrangian energy function, and 
consequently the Hamiltonian function, in order to take into account the use of non-standard 
connections. This definition characterizes the Lagrangian energy as the only function that 
realizes the equivalence between the Hamilton variational principle and the Hamilton-Jacobi 
principle. 

The next step was to investigate the dynamical relevance of the choice of different 
connections. We have proved that the dynamics is insensitive to this choice because the 
Poincar.6-Cartan forms of the Lagrangian formalism do not depend on the chosen connection, 
and the Hamiltoncartan forms of the Hamiltonian one can be redefined in order to maintain 
the same dynamics. 

It is worth pointing out that, from the physical point of view, the connection-dependence 
of the energy function can be understood as follows: for time-dependent systems, to take 
a non-standard connection can be interpreted as a change of the time action on Q x R 
(which arises from taking H(V) instead of x*TR as the horizontal sub-bundle). Then, it 
is reasonable that the energy function changes in its turn, since it can be considered as the 
conjugate function of 'time' (as is made evident in some geometrical descriptions of non- 
autonomous systems 171). A significant result is the relationship between the dynamical 
variation of the connection-dependent energy and the variation of the Lagrangian with 
respect to the time-action induced by the connection. 

A further consequence is that, for time-dependent dynamical systems described by a 
given Lagrangian function, we have proved that any first integral of the dynamics is the 
energy function for a suitable connection. Moreover, we have a means of obtaining different 
Lagrangian energy (or Hamiltonian) functions which are dynamically equivalent. This 
consists of taking different connections in order to construct these funUions. 

As a final remark, we trust that these results will help to clarify some aspects of the 
geometrical description of classical field theories. 
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